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Abstract 

Given a bialgebra B we present aunifying approach to deformations of associative algebras A with 
a left B-module algebra structure. Special deformations of the comultiplication of B yield universal 
deformation formulas, i.e. define deformations of the multiplicative structure for all B-module 
algebras A. This allows to derive known formulas of Moyal-Vey (1949) and Coll-Gerstenhaber- 
Giaquinto (1989) from a more general point of view. 0 1998 Elsevier Science B.V. All rights 
reserved. 

Subj. Class. : Quantum groups 
1991 MSC: 16S80; 16EGlO; 16W30; 16S30 
Keywords: Bialgebra actions; Deformations of algebras 

1. Introduction 

Let K be a ring containing the field Q of rational numbers, K’ = K [[h]] be the algebra 
of formal series on h and (A; WA, 1,~) a K-algebra with unit. This algebra structure extends 
in a natural way by K’-linearity to the algebra A’ := A[[h]] of power series in h with 
coefficients in A that we will denote by some abuse of notation also by PA. The aim of this 
paper is to study deformations of this structure. 

Definition 1. A (formal) deformation of the K-algebra A is an algebra structure 
Ah = (A’, ph, 1~) on A’ with 
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For vh to be associative in first order on h, qq must fulfill the property 

~1(~1,~2,~3)+~l(~l,u2), a3 = bolh, a2a3) + al PI (a29 a3) 

for al, ~22, a3 E A, i.e. has to be a 2-cocycle in the Hochschild complex of A. Such a 2- 
cocycle (~1 is called an inJnitesimu1 of the deformation. We restrict ourselves to the case 
when the 2-cochains q?k have the form (Pk = PA o Pck), where Pck) : A @ A + A @I A are 
K-linear maps that are induced from an action of a coalgebra B on A. Given a 2-cocycle 
S := P(l) of B we try to define P (k) fork > 2 so that ,_& is associative. - 

In practical applications such a 2-cocycle often appears as the product of 1-cocycles 
S = D 63 E, where D, E are elements of a certain Lie algebra 6 acting by derivations on 
A. This generalizes the action of G as left invariant vector fields on the algebra of smooth 
functions P(G), where G is the simply connected Lie group associated with G. 

There are two famous results that describe prolongations of such 2-cocycles to associative 
multiplications on Ah: 

Theorem 2 (Moyal-Vey [5,9]). If the Abeliun Lie algebra B acts on a K-algebra A by 
derivations, then for any element S E E @ 6 the composition j_&A o S is a 2-cocycle and the 
multiplication 

is associative. 

Theorem 3 (Co11 et al. [2]). Zf the 2-dimensional Lie algebra G with generators E, D and 
commutator relation [E, D] = E acts on the K-algebra A by derivations, then for 
S = E @ D the composition PA o S is u 2-cocycle and the multiplication 

/& = ,%A o (1 + hE @ I)‘@? 

is associative. 

Both theorems were first proved by direct calculations. For Moyal-Vey’s theorem these 
computations are straightforward and use only the Leibniz rule, since D and E commute. 
The second result is less elementary. We will refer to this example as Gerstenhaber’s. 

Such derivations may be extended to a (left) B-module structure on the algebra A in the 
sense of [8, 1.6.11 with B = U(G), the universal enveloping (bi)algebra of E. This more 
general point of view will be discussed below. 

More precisely, we leave the setting of universal enveloping algebras and define, for a 
bialgebra B, conditions on an element P E (B @B) [[h]] such that for any B-module algebra 
A the composition ph = WA o (P D) yields a deformation of A, where D is induced by the 
B-action on A. Thus we construct universal deformation formulas in the spirit of [6]. 

This approach allows to derive the above results as partial cases of a more general principle 
to construct algebra deformations. It turns out that in this frame deformations of PA are 
close related to deformations of the comultiplication of B thus leaving the class of universal 
enveloping algebras. 
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Different aspects of such a theory are demonstrated on Gerstenhaber’s example. It turns 
out that the tight connection between the deformation of the algebra structure of A[[h]], 
the comultiplication of B[[h]], and the adjustment of the 2-cocycle S described in the main 
theorem (Theorem 10) allows to construct deformation formulas step by step, increasing 
the order of h taken into account. 

Some of the ideas were already considered in [ 11,121. 

2. Bialgebras and B-module algebras 

Let (B; pa, lg; Ag, EB) be abialgebra withmultiplication p~,unit l~,comultiplication 
de, and counit CB as defined, for example, in [8]. We often omit the index B and use the 
standard notion where an integer index of an operator, acting on a tensor product, denotes 
the tensor cofactor, on which the operator acts. For b E B we use the Sweedler notation 
A(b) = Cb(l, 63 b(2) andAtA = AzA(b) = Cb(l) 63 b(2) @b(3) ifweneedtoexploit 
their special structure as elements of B 63 B, resp. B 8 B 8 B. 

For a K-coalgebra C there is a notion of cohomology groups H” (K, C) as explained e.g. 
in [7, Ch. 18.51. For a k-cocycle S E C @Jo the coboundary formula is defined as 

6~ = 18 S + &-l)‘Ais + (-l)k+‘S 8 1. 

i=l 

Especially, a 1-cocycle X E C fulfills the condition A(X) = X1 + X2. For a 2-cocycle 
S E C 8~ C we get AZ(S) + S23 = Al(S) + S12. 

Definition 4. For a given bialgebra B a (left) B-module algebra A in the sense of [8, 
1.6.11 is an algebra (A, pA, 1) with a left B-module action D such that PA and AS satisfy 
additionally the compatibility conditions 

Vb E B, Val,az E A: b D (alaT) = c (b(l) D al) (b(2) D az), (1) 

Vb E B: b D I/, = c(b). IA. (2) 

This definition generalizes to bialgebras the concept of actions of universal enveloping 
algebras induced by Lie algebras of derivations. Indeed, given an algebra A and a Lie algebra 
6 acting on A, the universal enveloping algebra B = U(G) has a natural bialgebra structure 
with comultiplication A defined by A(X) = X @ 1 + 18 X for X E E and A is a B-module 
algebraiffforXE6andal,a:!EA 

X D (al . a2) = (X D al), a2 +al(Xba2), 

i.e. X acts as derivation on A. 
Below we will only exploit condition (I), hence most of our conclusions remain valid 

for bialgebras without counit. For such an algebra B = (B, pi, 1~) with (compatible) 
comultiplication AS we define a B-module action on A, satisfying (1) to be admissible. 
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If no confusion arises, the b sign will be omitted and b E B will be identified with its 
action b D E EndK (A). Hence condition (1) may be reformulated as 

b 0 PA = PA 0 As(b). (3) 

Note that an action of a bialgebra B on a K-algebra A is uniquely defined by the action of 
the generators of B on the generators of A. 

B-module algebras are quite ubiquitous as explained in [8, 1.6.1. Let us add some more 
examples: 

The left action of B = A on itself is an admissible action, if we define A(u) = a @ 1 
for a E B. Analogously the right action of B = A”P on A is an admissible action w.r.t. 
A(a) = 1 @CZ. 
This may be extended to an admissible action of the enveloping algebra Ae := A 8’~ A”P 
on A, where the comultiplication is given by the rule A(x ~3 y) = (x @ 1) @ (1 8 y). If 
Ae = EndK (A), e.g. for a matrix algebra A4, (K), this construction allows to define an 
admissible action of the whole algebra of endomorphisms EndK (A) on A. 
The natural action of the bialgebra B = K[L3/8x1,. . . , ~/~x,] defines a B-module 
algebra structure on A = K [XI, . . . , x,], since B is the universal enveloping algebra of 
an Abelian Lie algebra acting on A by derivations. 
This action may be extended by left action of A on itself to an admissible action of the 
Weyl algebra W = A 8~ B on A, where the multiplication on W is induced by the 
commutation rules 

a 

G’ 
Xj = Sij + Xj * a 

axi ’ 

and the comultiplication by the corresponding rules on A and B 

This may easily be generalized to arbitrary Lie algebras E acting on A by derivations. 
The same is true for any bialgebra B and B-module algebra A, if the corresponding 
multiplication on W = A @K B is induced by the commutation rules 

b . a = c (b(l) Da> . b(2), 

and the comultiplication again by the corresponding rules on A and B. Here and below 
a E A and b E B are identified with their images in W under the embeddings A += 
A ~3 1 c W and B + 1 @I B c W. This is the well-known lef cross product A x B, 
see [8, 1.6.61. 
This may be generalized once more: There is also a natural multiplication and comul- 
tiplication on the K-module W := Ae @ B extending those of Ae and B, such that 
W acts admissible on A. As above we have only to define the product b . (x @I y) for 
b E B, x @ y E Ae. As easily seen the correct rule is 

b. (x 8 Y) = c (@(I, D xl @ (b(3) D Y>) 3 b(2). 

Note that these Weyl algebras do not admit a counit in general. 
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6. For a bialgebra B its dual B* has a natural B-module algebra structure 

(U D b*, u) := (b*, v. u) for b* E B*, u, u E B, 

if we define the multiplication on B* by the rule 

(a* . b*, w) := (a* 63 b*, A(w)) for a*, b* E B*, w E B. 

Here (b*, w) denotes the canonical pairing between B* and B. The associativity of PB* 
is a consequence of the coassociativity of A. 

3. Deformations of B-module algebras 

The main idea of this section is the observation that for both formulas considered in the 
introduction the deformed multiplication has the form ,_Q = PA o P for a certain element 
P E (B ~3 B)[[h]] over the bialgebra B = U (6). Hence as for pB* in the above example 
one can try to exploit the coassociativity of AB to prove associativity of ph. In the spirit 
of universal deformation formulas we will ask for a condition on P such that Fh becomes 
associative at once for all B-module algebras A. 

Assume we are given a bialgebra B and a B-module algebra A as in Section 2. The 
scalar extension K + K’ = K[[h]] defines a natural bialgebra structure on B’ = B[[h]], 
by some abuse of notation denoted (B’; p,~, lg; AS, EB), and a B’-module structure on 
(A’ = A[ [h]], @A, 1 A). Below we consider the question, how deformations of the algebra 
structure on A are related to the bialgebra B. 

Let us consider the condition that must be fulfilled by an element 

p = I+@P”’ E B’ 8’~’ B’ = (B 63.~ BNhll 
i=l 

for & = PA 0 P to be associative: 

0 = @h o (ph.12 - ph.23) = I-L 0 p 0 (CL12 0 p12 - CL23 0 p23). 

Since B acts admissible we get by (3) 

P 0 /-412 = CL12 0 AI (f’>, p 0 P23 = P23 0 A2(P), 

and altogether 

0 = /J 0 P12 0 (A1(P)P12 - A2(p)p23). 

Hence 

AI (P)P12 - A2(f?p23 = 0 (4) 

is a sufficient condition for P to make ,& associative for any B-module algebra A. 
A condition similar to (4) was first considered by Drinfel’d in [3], who showed that for 

B = U (gl,*) it is essentially equivalent to the condition that R = P2< ’ P12 fulfills the 
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quantum Yang-Baxter equation. Later on it turned out that there is a close connection to 
twists of the comultiplication of bialgebras as defined e.g. in [l, 4.2.141. Since universal 
deformation formulas in the above sense are essentially consequences of certain coasso- 
ciativity conditions on B one may not wonder that these twists play a crucial role in our 
considerations, too. We will come back to them below. 

For the moment let us first note that (4) yields already a one-line proof of the following 
generalization of the Moyal-Vey formula. 

Theorem 5. Zf A is a B-module algebra over the commutative bialgebra B then for any 
2-cocycle S E B 63 B the multiplication 

is associative. 

Proof. Indeed, for P = ehS condition (4) is equivalent to 

(5) 

and finally to Al(S) + S12 = AZ(S) + $3. 0 

As an example let us consider the commutative bialgebra B with the free generators 
Ei,D’,L:,i,j=l,..., n and the comultiplication that using the matrix notation 

E= (El E2 ..a E,), L = (L:‘) 

may be written in the following form: 

A(E) = EILZ +E2, A(D) = DI +LtD2, A(L) = LIL2. 

Then the 2-cochain S = EtD2 = x7=, Ei 8 D’ is a cocycle and the power series P = ehS 
satisfies Eq. (4). 

This yields an explicit formula for a deformation of any B-module algebra A that does 
not fit into the frame of Theorem 2. 

Note that the proof of the above theorem may be generalized to non-commutative 
bialgebras if only the exponents in (5) mutually commute: 

Theorem 6. Let S be a 2-cocycle of a (not necessarily commutative) bialgebra B and 
[Al(S), S12] = [AZ(S), &3] = 0. Then P = exp(hS) satis$es (4). 
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4. A differential equation 

The solution P = ehS of (4) described in Theorem 5 is expressed as an exponential 
function. Since f(x, h) = ehx is the solution of the differential equation af/ah = x . f 
with initial condition f (x, 0) = 1 the “infinitesimal” 

S/j := P-‘g E (B 631 B)[[h]] (6) 

of P also may play a crucial role for other applications. Note that the power series P is 
uniquely defined by & but their connection may be more difficult to describe than in the 
commutative case and for constant & as in Theorem 5. Since &,lh=e = PC’) coincides 
with the element S E B 63 B defined in Section 1, & is a deformation of S (in a sense to be 
specified). 

Under certain additional assumptions condition (4) may be reformulated as a condition 
on $, . For example, if Bh = (B’; pi, 1 s ; Ah, 6~) is a commutative bialgebra structure on 
B’ with a comultiplication, not induced from B, and & a non-constant 2-cocycle of Bh, we 
get as above, that P = exp(J & dh) satisfies (4) for A = Ah, and thus yields a deformation 
of PA for any Bh-module algebra (A’, PA, lA). 

Theorem 7. If A’ is a Bh -module algebra over the commutative bialgebra Bh = (B’; p g , 
1~; Ah, 6~) then for any (not necessarily constant) .&cocycle & E B C3 B[[h]] of Bh the 
multiplication 

on A’ is associative. 

AS an example consider the commutative bialgebra Bh = K’[E, D] with comultiplication 
induced by 

&(E)=El+EZ.+hElE2, A,(D) = Dl + (1 + h El)-’ . D2. 

Coassociativity can easily be proved using the multiplicative matrix 

(l+hE)-’ D 
0 > 1 . 

The 2-cocycle 

yields after integration P = (1 +h El ) @ , i.e. Gerstenhaber’s formula, but for a commutative 

bialgebra and a deformed B’-module action, where D and E act as derivations only up to 
first order. 



136 H.-G. Griibe, A.Z Vlassov/Journal of Geometry and Physics 28 (1998) 129-142 

5. A first proof of Gerstenhaber’s formula 

With some more effort we also may prove Gerstenhaber’s formula in its original setting. 
Denote @ (x , y) = (1 + hx)Y so that P = (1 + h Et) ‘2 from Theorem 3 may be rewritten 
as P = $(El , 02). By (4) we only have to show that 

@(El + E2,03) @(El 7 02) = @(El, 02 + 03) @(E2,03). 

To see this lets first collect several helpful identities: 

(7) 

Lemma 8. For f, g E K[x][[h]] and D, E with [E, D] = E we get 

(1) E”f(D) = f(D + n)E”, 

(2) ID, f(E)1 = -x(alax)f(x) 1.z.~ 
(3) f(E)D = (D + E(aIaE) In f(E)) . f(E), 
(4) f(E)g(D) = g(D + E@/aE)ln f(E)) . f(E) (note that g(D + E(a/aE) In f(E)) 

is a function with non commuting arguments!), 
(5) Applying the dejinition 

X 

0 

._ X(X - 1) *. . (x - k + 1) 
k 

.- 
k! 

of binomial coefJicients to x = D we get 

ehER = ghkEk(l() = (1 + hE)D. 

(6) f(E)eUD = eaDf(e”E) and eUDf(E) = f(E/e”)eaD. 
In particular 

(7) (1 + hx)Df(E> = f(E/l + hx)(l + hx)D. 

Proo$ These formulas may be proved immediately by straightforward computations. Con- 
ditions (l)-(5) follow almost directly from the commutation rule [E, D] = E and linearity. 
To prove condition (6) we obtain from condition (1). for f = c Ukxk 

f (E)eaD = F&Eke”’ = FQea(D+k)Ek = FapeuD(eakEk) 
k=O k=O k=O 

=eaD ak(eaE)k = euDf(ea E). 0 
k=O 

There is a more rigid result than Theorem 3: 

Theorem 9. A power series f(x, y) E K[x, y][[h]] with f(0, y) = 1, f,(O, y) = h y 
satisfies (7) iff f = $, i.e. 

f (x, y) = (1 + hx)Y = Fhkxk(;), 
k=O 



H.-G. Griibe, A.T. Vlassov/Jounal of Geometry and Physics 28 (1998) 129-142 137 

ProoJ: Replacing in (7) the commuting variables El, 03 by x resp. y and the remaining 
non-commuting D2, E:! by D, E we have to solve the equation 

f(x + E, y)f(x, D> = f(x, D + y)f(E, Y). 

We will solve this functional equation transforming it into a differential equation for f. 
Take the first derivative with respect to x 

fv(x + E, y)f(x, D) + f(x + E, y)fx(x, D) = fx(x. D + y)f(E, Y) 

and set x = 0. With f(0, y) = 1, fX(O, y) = hy we get 

fr(E, Y) + f(E, Y) hD = h (D + y> f (E, Y) 

01 

fx(E, Y) = h ID, fW, ~11 + hy f(E, y). 

Lemma 8 yields 

]D, f(E, Y)I = -E&.f(E, y) = -E~,(E, y). 

(8) 

Substituting this expression in (8) we get an equation in E only. 

fx(E, Y> = -hEACE, y) + hyf(E, y). 

Its integral with respect to the initial conditions yields f (x, y) = (1 + /IX)? and vice versa. 
0 

6. A bialgebra deformation 

Let (H; PH, 1 H ; AH, EH) be a bialgebra and P E H 63 H an invertible element such 
that 

Ar(P)Pt2 = A2(P)P23 and E](P) = Q(P) = 1~. 

Then the ?wist H’ := (H; PH, 1~; AL, EH) ofH by P, with 

AL(h) = P-‘AH(~)P fork E H, 

is also a bialgebra, see [ 1,4.2.13]. For a Hopf algebra H the twist has even a Hopf algebra 
structure. Twists of cocommutative Hopf algebras are triangular Hopf algebras with uni- 
versal R-matrix R = P2T* Pl2, see [l, 4.2.141, and hence close related to the quantum 
Yang-Baxter equation. 

Since the first condition on P is exactly the universal associativity condition (4), such 
twists play also a central role in the following theorem. 

Let B be a bialgebra and A a B-module algebra as defined above. Assume that 
P E 1 + h(B @ B)[[h]] satisfies condition (4) and cl(P) = Q(P) = 1~. Then the 
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twisted bialgebra Bh = (B’)’ may be considered as a deformation of B’. Hence we write 
Ah instead of A’. 

Theorem 10. These assumptions imply: 
(i) Ah = (A’, j& = PA o P, 1~) is a K/-algebra, i.e. ph is associative. 

(ii) Ah is a Bh-module algebra (w.Et. the same B’-action). 
(iii) & = P-‘(aP)/ah) is a 2-cocycle of the coalgebra (Bh, Ah) that prolongates the 

2-cocycle S = P (I) of the coalgebra (B, A) and defines P uniquely. 

Note that the additional condition on P forces ~a to be a coumt of Bh . It is automatically 
satisfied for graded bialgebras and may be skipped in the more general setting of admissible 
actions of an algebra B with compatible comultiplication. 

Pro08 j.Lh is associative by (4). 
b o ,Uh = /Lh o Ah(b), i.e. b o PA o P = PA o do o P follows immediately from (3) 

for B. 
Since (a/ah) P = PSI, the derivative of (4) yields 

At(P&)Ptz + At(p)pt&z.t2 = &(p&)pz + &(p)&%.z. 

Note that further 

Al(psdf’12 = Al(p) = Al(f’)Pn&,l(Sh) 

and also 

A2(P&)P23 = &(P)fhAh,2(Sh). 

With (4) we obtain 

A1(P)P12 . ah(sh) = 0. 

Hence 8h (&) = 0 since the first cofactor is invertible. 0 

This theorem shows that our approach to algebra deformations through B-module alge- 
bras is a very natural one. It does not only allow to formulate a condition on P that implies 
the associativity of ,& = PA o P but also yields a deformation of the coalgebra structure on 
B in such a way that the deformation process may be iterated. It is this point where we leave 
the original setting of (universal enveloping algebras of) Lie algebras acting by derivations, 
since the deformed comultiplication rule is usually more difficult. 

Let us explain these changes on Gerstenhaber’s example. For P = (1 + hEI)@ we get 
as new comultiplication 

Ah(E) = P-I As( = (1 + hEI)-D2(EI + E2)(1 + hEIf? 

Applying the rules collected in Lemma 8 we obtain 

Ah(E) = Et + E2(1 + hE,)-D2+‘(1 + hE,f2 = El + (1 + hEI)E2 
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and in the same way 

Ah(D) = P-‘A(D)P = (1 + hE,)-02D,(1 + hE,)D2 + D2 

= D1 - hDzEl(1 + hE,)-’ + D2, 

since 

[(l + hE,)-02, Dl] = B&(1 + hE,)-o2 = -hD2E,(l +hE,)-D2-‘. 
1 

Introducing the (invertible) element L := 1 + h E E Bh we get 

Ah(B) = BI + LrE2, Ah(D) = DI + L;‘Dz Ah(L) = LlL2. 

Note that these are the same formulas for & as for the commutative bialgebra Bh at the 
end of Section 4. 

Due to the last formula In(L) is a lifting of the B-cocycle E to a Bh-cocycle. Since 

s,, = p-I% = LTD2 E, D2 L+’ = L;’ El D2 

we get 8h (D) = h &, i.e. the B-cocycle D is not liftable. S is a bialgebra analog of a jump 
cocycle as defined in [6, p. lo] since S = & (h=c and Sk = (l/h)&(D) is a coboundary 
for h # 0. 

7. Another derivation of Gerstenhaher’s formula 

Over K’[h-‘1 the bialgebra Bh considered in Section 6 may even be generated by D and 
L. Its bialgebra structure is uniquely defined by the h-independent relations 

A(D) = D1 + L;‘D2, A(L) = LIL2, [L, D] = L - 1. (9) 

It turns out that these relations already imply Gerstenhaber’s formula. This suggests the 
following generalization. 

Theorem 11. Let fi be a K’-bialgebra and L, D E 6 such that L - 1 E hj, hence L-’ 
exists, and relations (9) arefulfilled. Then the power series P = LTD2 = exp(- In L 1 .D2) 
satisfies Eq. (4). 

ProojI For our P Eq. (4) has the form 

(L, L2)-D3 . L1D2 = L;D2-Li’D3 . L;D3 

or 

L;D’ . p . Ly’ = L --Dz-L;‘@ . LzD3 
1 (10) 
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Here only L2 and D2 do not commute. In order to exchange the two factors LyD’ and 

LFDz in the left-hand side we introduce the element E := L - 1. Then [E, D] = E and 
by Lemma 8 we have 

f(E)g(D) = g 
( 

D + EA ln f(E) 
> 

. f(E) 

for f,g E K[x][[h]]. Since 

f (E2) = LFD3 = (1 + Ez)-~~ and E2$ In f (E2) = -E2L,‘Dj 
2 

the left-hand side of (10) may be written as 

(Lp *L, -WW;‘W . L2D3 

Comparing this with the right-hand side of (10) we see that the exponents of L 1 are equal. 
0 

8. Guessing deformation formulas 

It remains mysterious how to guess the special form P = ( 1 + h E 1) D2 in Gerstenhaber’s 
formula. The tight connection between the deformation of the algebra structure of A’, the 
comultiplication of B’, and the adjustment of the 2-cocycle & described in Theorem 10 
allows to construct deformation formulas step by step, increasing the order of h taken into 
account. 

Up to first order of h. i.e. (mod h2) we have P = 1 + hS and Eq. (4) is equivalent to the 
condition 6(S) = 0. Thus there is a one-to-one correspondence between 2-cocycles of the 
coalgebra B and solutions P of (4) up to first order. 

For the new comultiplication in Bh defined by Theorem 10 as 

Ah(b) = P-’ . do . P = (1 - hS)As(b)(l + hS) (mod h2) 

we get Ah(b) = A,(b) + hi(b) (mod h2) with d(b) := [A,(b), S] and for the new 
coboundary operator 6h of Bh 

&(S) 3 6(s) - hdl(S) + h&(S) (mod h2). 

Hence the B-cocycle S may not be a Bh-cocycle. To prolongate the deformation to the next 
order S has to be changed to & = S + hS’ (mod h2) such that 

6(Y) = d,(S) - d,(S). 

For Gerstenhaber’s example this first order deformation generated by 
S = El D2 yields 

A(E) = El [E2,021= ElE2, d(D) = [Dl, El] D2 = -El D2 

the 2-cocycle 
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and hence 

Ah(E) c EI + E2 + hEl E2 = El + (1-t hEI)E2 (mod h2), 

A/t(D) E DI + 02 - hEID = DI + (1 - hEI)DZ (mod h2) 

and 

ah(S) G -2hElE2D3 (mod h2). 

For the 2-cochain ETD2 = E2 @ D E B ~3 B we get 

6(E2 @ D) = S(E2) @ D = -2E, E2D3. 

Thus the B-cocycle S may be lifted (mod h2) to the &-cocycle 

& = El D2 - hE:D;? = (1 - hEI)El D2. 

This suggests to test whether 

Ah(E) = EI + ~51E2, Ah(D) = D1 + L,‘D2 

with L := 1 + h E E Bh describes the desired deformation of the comultiplication of B. 
Direct computations show that this is indeed the case and since Ah (L) = L 1 L2 we can 
apply Theorem 11 to get the desired formula for P. 
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